Sciweavers

Share
KDD   2002 International Conference on Knowledge Discovery and Data Mining
Wall of Fame | Most Viewed KDD-2002 Paper
KDD
2002
ACM
1075views Data Mining» more  KDD 2002»
9 years 11 months ago
CLOPE: a fast and effective clustering algorithm for transactional data
This paper studies the problem of categorical data clustering, especially for transactional data characterized by high dimensionality and large volume. Starting from a heuristic m...
Yiling Yang, Xudong Guan, Jinyuan You
Disclaimer and Copyright Notice
Sciweavers respects the rights of all copyright holders and in this regard, authors are only allowed to share a link to their preprint paper on their own website. Every contribution is associated with a desciptive image. It is the sole responsibility of the authors to ensure that their posted image is not copyright infringing. This service is compliant with IEEE copyright.
IdReadViewsTitleStatus
1Download preprint from source1075
2Download preprint from source293
3Download preprint from source286
4Download preprint from source228
5Download preprint from source214
6Download preprint from source197
7Download preprint from source196
8Download preprint from source194
9Download preprint from source193
10Download preprint from source191
11Download preprint from source189
12Download preprint from source187
13Download preprint from source186
14Download preprint from source184
15Download preprint from source184
16Download preprint from source183
17Download preprint from source182
18Download preprint from source182
19Download preprint from source179
20Download preprint from source179
21Download preprint from source175
22Download preprint from source173
23Download preprint from source173
24Download preprint from source171
25Download preprint from source170
26Download preprint from source170
27Download preprint from source170
28Download preprint from source169
29Download preprint from source169
30Download preprint from source166
31Download preprint from source166
32Download preprint from source164
33Download preprint from source160
34Download preprint from source157
35Download preprint from source157
36Download preprint from source157
37Download preprint from source155
38Download preprint from source154
39Download preprint from source152
40Download preprint from source150
41Download preprint from source149
42Download preprint from source148
43Download preprint from source148
44Download preprint from source147
45Download preprint from source147
46Download preprint from source147
47Download preprint from source147
48Download preprint from source146
49Download preprint from source146
50Download preprint from source145
51Download preprint from source144
52Download preprint from source144
53Download preprint from source140
54Download preprint from source140
55Download preprint from source138
56Download preprint from source138
57Download preprint from source138
58Download preprint from source137
59Download preprint from source136
60Download preprint from source135
61Download preprint from source134
62Download preprint from source130
63Download preprint from source130
64Download preprint from source128
65Download preprint from source127
66Download preprint from source126
67Download preprint from source125
68Download preprint from source122
69Download preprint from source122
70Download preprint from source122
71Download preprint from source120
72Download preprint from source119
73Download preprint from source119
74Download preprint from source119
75Download preprint from source118
76Download preprint from source115
77Download preprint from source113
78Download preprint from source113
79Download preprint from source112
80Download preprint from source110
81Download preprint from source109
82Download preprint from source109
83Download preprint from source109
84Download preprint from source108
85Download preprint from source107
86Download preprint from source106
87Download preprint from source104
88Download preprint from source96
89Download preprint from source93
90Download preprint from source85
books