Sciweavers

NIPS
2008

On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing

13 years 5 months ago
On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing
Randomly connected recurrent neural circuits have proven to be very powerful models for online computations when a trained memoryless readout function is appended. Such Reservoir Computing (RC) systems are commonly used in two flavors: with analog or binary (spiking) neurons in the recurrent circuits. Previous work showed a fundamental difference between these two incarnations of the RC idea. The performance of a RC system built from binary neurons seems to depend strongly on the network connectivity structure. In networks of analog neurons such dependency has not been observed. In this article we investigate this apparent dichotomy in terms of the in-degree of the circuit nodes. Our analyses based amongst others on the Lyapunov exponent reveal that the phase transition between ordered and chaotic network behavior of binary circuits qualitatively differs from the one in analog circuits. This explains the observed decreased computational performance of binary circuits of high node in-d...
Benjamin Schrauwen, Lars Buesing, Robert A. Legens
Added 29 Oct 2010
Updated 29 Oct 2010
Type Conference
Year 2008
Where NIPS
Authors Benjamin Schrauwen, Lars Buesing, Robert A. Legenstein
Comments (0)