Sciweavers

ISQED
2008
IEEE

Fundamental Data Retention Limits in SRAM Standby Experimental Results

13 years 10 months ago
Fundamental Data Retention Limits in SRAM Standby Experimental Results
SRAM leakage power dominates the total power of low duty-cycle applications, e.g., sensor nodes. Accordingly, leakage power reduction during data-retention in SRAM standby is often addressed by reducing the supply voltage. Each SRAM cell has a minimum supply voltage parameter called the data-retention voltage (DRV), above which the stored bit can be retained reliably. The DRV exhibits significant intra-chip variation in the deep sub-micron era. As supply voltage is lowered, leakage power reduces, but a larger fraction of SRAM cells is prone to retention failures. Use of appropriate error-correction to mitigate cellreliability is proposed. Using this approach, the standby supply voltage is selected to minimize leakage power per useful bit. The fundamental limits on the leakage power per useful bit, while taking the DRV distribution into account, are established. Minimization of power per bit results in a supply-voltage at which a small fraction of cells fail to retain the data. For ex...
Animesh Kumar, Huifang Qin, Prakash Ishwar, Jan M.
Added 31 May 2010
Updated 31 May 2010
Type Conference
Year 2008
Where ISQED
Authors Animesh Kumar, Huifang Qin, Prakash Ishwar, Jan M. Rabaey, Kannan Ramchandran
Comments (0)