Sciweavers

Share
GECCO
2007
Springer

Acquiring evolvability through adaptive representations

9 years 5 months ago
Acquiring evolvability through adaptive representations
Adaptive representations allow evolution to explore the space of phenotypes by choosing the most suitable set of genotypic parameters. Although such an approach is believed to be efficient on complex problems, few empirical studies have been conducted in such domains. In this paper, three neural network representations, a direct encoding, a complexifying encoding, and an implicit encoding capable of adapting the genotype-phenotype mapping are compared on Nothello, a complex game playing domain from the AAAI General Game Playing Competition. Implicit encoding makes the search more efficient and uses several times fewer parameters. Random mutation leads to highly structured phenotypic variation that is acquired during the course of evolution rather than built into the representation itself. Thus, adaptive representations learn to become evolvable, and furthermore do so in a way that makes search efficient on difficult coevolutionary problems. Categories and Subject Descriptors
Joseph Reisinger, Risto Miikkulainen
Added 07 Jun 2010
Updated 07 Jun 2010
Type Conference
Year 2007
Where GECCO
Authors Joseph Reisinger, Risto Miikkulainen
Comments (0)
books