Algorithmic detection of semantic similarity

13 years 6 months ago
Algorithmic detection of semantic similarity
Automatic extraction of semantic information from text and links in Web pages is key to improving the quality of search results. However, the assessment of automatic semantic measures is limited by the coverage of user studies, which do not scale with the size, heterogeneity, and growth of the Web. Here we propose to leverage human-generated metadata -- namely topical directories -- to measure semantic relationships among massive numbers of pairs of Web pages or topics. The Open Directory Project classifies millions of URLs in a topical ontology, providing a rich source from which semantic relationships between Web pages can be derived. While semantic similarity measures based on taxonomies (trees) are well studied, the design of well-founded similarity measures for objects stored in the nodes of arbitrary ontologies (graphs) is an open problem. This paper defines an information-theoretic measure of semantic similarity that exploits both the hierarchical and non-hierarchical structure...
Ana Gabriela Maguitman, Filippo Menczer, Heather R
Added 22 Nov 2009
Updated 22 Nov 2009
Type Conference
Year 2005
Where WWW
Authors Ana Gabriela Maguitman, Filippo Menczer, Heather Roinestad, Alessandro Vespignani
Comments (0)