Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

SAGA

2007

Springer

2007

Springer

In the layered-graph query model of network discovery, a query at a node v of an undirected graph G discovers all edges and non-edges whose endpoints have diﬀerent distance from v. We study the number of queries at randomly selected nodes that are needed for approximate network discovery in Erd˝os-R´enyi random graphs Gn,p. We show that a constant number of queries is suﬃcient if p is a constant, while Ω(nα ) queries are needed if p = nε /n, for arbitrarily small choices of ε = 3/(6 · i + 5) with i ∈ N. Note that α > 0 is a constant depending only on ε. Our proof of the latter result yields also a somewhat surprising result on pairwise distances in random graphs which may be of independent interest: We show that for a random graph Gn,p with p = nε /n, for arbitrarily small choices of ε > 0 as above, in any constant cardinality subset of the nodes the pairwise distances are all identical with high probability.

Related Content

Added |
09 Jun 2010 |

Updated |
09 Jun 2010 |

Type |
Conference |

Year |
2007 |

Where |
SAGA |

Authors |
Thomas Erlebach, Alexander Hall, Matús Mihalák |

Comments (0)