Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

ICALP

2001

Springer

2001

Springer

We present a probabilistic algorithm that, given a connected graph G (represented by adjacency lists) of average degree d, with edge weights in the set {1, . . . , w}, and given a parameter 0 < ε < 1/2, estimates in time O(dwε−2 log dw ε ) the weight of the minimum spanning tree (MST) of G with a relative error of at most ε. Note that the running time does not depend on the number of vertices in G. We also prove a nearly matching lower bound of Ω(dwε−2) on the probe and time complexity of any approximation algorithm for MST weight. The essential component of our algorithm is a procedure for estimating in time O(dε−2 log d ε ) the number of connected components of an unweighted graph to within an additive error of εn. (This becomes O(ε−2 log 1 ε ) for d = O(1).) The time bound is shown to be tight up to within the log d ε factor. Our connected-components algorithm picks O(1/ε2) vertices in the graph and then grows “local spanning trees” whose sizes are spe...

Related Content

Added |
29 Jul 2010 |

Updated |
29 Jul 2010 |

Type |
Conference |

Year |
2001 |

Where |
ICALP |

Authors |
Bernard Chazelle, Ronitt Rubinfeld, Luca Trevisan |

Comments (0)