Sciweavers

Share
ICASSP
2011
IEEE

Approximation of pattern transformation manifolds with parametric dictionaries

8 years 10 months ago
Approximation of pattern transformation manifolds with parametric dictionaries
The construction of low-dimensional models explaining highdimensional signal observations provides concise and efficient data representations. In this paper, we focus on pattern transformation manifold models generated by in-plane geometric transformations of 2D visual patterns. We propose a method for computing a manifold by building a representative pattern such that its transformation manifold accurately fits a set of given observations. We present a solution for the progressive construction of the representative pattern with the aid of a parametric dictionary, which in turn provides an analytical representation of the data and the manifold. Experimental results show that the patterns learned with the proposed algorithm can efficiently capture the main characteristics of the input data with high approximation accuracy, where the invariance to the geometric transformations of the data is accomplished due to the transformation manifold model.
Elif Vural, Pascal Frossard
Added 21 Aug 2011
Updated 21 Aug 2011
Type Journal
Year 2011
Where ICASSP
Authors Elif Vural, Pascal Frossard
Comments (0)
books