Better Binary List-Decodable Codes Via Multilevel Concatenation

9 years 4 months ago
Better Binary List-Decodable Codes Via Multilevel Concatenation
We give a polynomial time construction of binary codes with the best currently known trade-off between rate and error-correction radius. Specifically, we obtain linear codes over fixed alphabets that can be list decoded in polynomial time up to the so called Blokh-Zyablov bound. Our work builds upon [8] where codes list decodable up to the Zyablov bound (the standard product bound on distance of concatenated codes) were constructed. Our codes are constructed via a (known) generalization of code concatenation called multilevel code concatenation. A probabilistic argument, which is also derandomized via conditional expectations, is used to show the existence of inner codes with a certain nested list decodability property that is appropriate for use in multilevel concatenated codes. A “level-by-level” decoding algorithm, which crucially uses the list recovery algorithm for folded Reed-Solomon codes from [8], enables list decoding up to the designed distance bound, aka the Blokh-Zy...
Venkatesan Guruswami, Atri Rudra
Added 07 Jun 2010
Updated 07 Jun 2010
Type Conference
Year 2007
Authors Venkatesan Guruswami, Atri Rudra
Comments (0)