Cartesian genetic programming

10 years 8 months ago
Cartesian genetic programming
This paper presents a new form of Genetic Programming called Cartesian Genetic Programming in which a program is represented as an indexed graph. The graph is encoded in the form of a linear string of integers. The inputs or terminal set and node outputs are numbered sequentially. The node functions are also separately numbered. The genotype is just a list of node connections and functions. The genotype is then mapped to an indexed graph that can be executed as a program. Evolutionary algorithms are used to evolve the genotype in a symbolic regression problem (sixth order polynomial) and the Santa Fe Ant Trail. The computational effort is calculated for both cases. It is suggested that hit effort is a more reliable measure of computational efficiency. A neutral search strategy that allows the fittest genotype to be replaced by another equally fit genotype (a neutral genotype) is examined and compared with non-neutral search for the Santa Fe ant problem. The neutral search proves to be ...
Julian Francis Miller, Simon L. Harding
Added 12 Aug 2010
Updated 12 Aug 2010
Type Conference
Year 2010
Authors Julian Francis Miller, Simon L. Harding
Comments (0)