Chromatic correlation clustering

7 years 12 months ago
Chromatic correlation clustering
We study a novel clustering problem in which the pairwise relations between objects are categorical. This problem can be viewed as clustering the vertices of a graph whose edges are of different types (colors). We introduce an objective function that aims at partitioning the graph such that the edges within each cluster have, as much as possible, the same color. We show that the problem is NP-hard and propose a randomized algorithm with approximation guarantee proportional to the maximum degree of the input graph. The algorithm iteratively picks a random edge as pivot, builds a cluster around it, and removes the cluster from the graph. Although being fast, easy-to-implement, and parameter free, this algorithm tends to produce a relatively large number of clusters. To overcome this issue we introduce a variant algorithm, which modifies how the pivot is chosen and and how the cluster is built around the pivot. Finally, to address the case where a fixed number of output clusters is re...
Francesco Bonchi, Aristides Gionis, Francesco Gull
Added 28 Sep 2012
Updated 28 Sep 2012
Type Journal
Year 2012
Where KDD
Authors Francesco Bonchi, Aristides Gionis, Francesco Gullo, Antti Ukkonen
Comments (0)