Composing Quantum Protocols in a Classical Environment

9 years 10 months ago
Composing Quantum Protocols in a Classical Environment
We propose a general security definition for cryptographic quantum protocols that implement classical non-reactive two-party tasks. The definition is expressed in terms of simple quantum-information-theoretic conditions which must be satisfied by the protocol to be secure. The conditions are uniquely determined by the ideal functionality F defining the cryptographic task to be implemented. We then show the following composition result. If quantum protocols 1, . . . , securely implement ideal functionalities F1, . . . , F according to our security definition, then any purely classical two-party protocol, which makes sequential calls to F1, . . . , F , is equally secure as the protocol obtained by replacing the calls to F1, . . . , F with the respective quantum protocols 1, . . . , . Hence, our approach yields the minimal security requirements which are strong enough for the typical use of quantum protocols as subroutines within larger classical schemes. Finally, we show that recently ...
Serge Fehr, Christian Schaffner
Added 25 Nov 2009
Updated 25 Nov 2009
Type Conference
Year 2009
Where TCC
Authors Serge Fehr, Christian Schaffner
Comments (0)