Computationally Sound, Automated Proofs for Security Protocols

10 years 7 months ago
Computationally Sound, Automated Proofs for Security Protocols
Since the 1980s, two approaches have been developed for analyzing security protocols. One of the approaches relies on a computational model that considers issues of complexity and probability. This approach captures a strong notion of security, guaranteed against all probabilistic polynomial-time attacks. The other approach relies on a symbolic model of protocol executions in which cryptographic primitives are treated as black boxes. Since the seminal work of Dolev and Yao, it has been realized that this latter approach enables significantly simpler and often automated proofs. However, the guarantees that it offers have been quite unclear. In this paper, we show that it is possible to obtain the best of both worlds: fully automated proofs and strong, clear security guarantees. Specifically, for the case of protocols that use signatures and asymmetric encryption, we establish that symbolic integrity and secrecy proofs are sound with respect to the computational model. The main new cha...
Véronique Cortier, Bogdan Warinschi
Added 27 Jun 2010
Updated 27 Jun 2010
Type Conference
Year 2005
Where ESOP
Authors Véronique Cortier, Bogdan Warinschi
Comments (0)