Sciweavers

Share
JMLR
2012

Contextual Bandit Learning with Predictable Rewards

9 years 3 months ago
Contextual Bandit Learning with Predictable Rewards
Contextual bandit learning is a reinforcement learning problem where the learner repeatedly receives a set of features (context), takes an action and receives a reward based on the action and context. We consider this problem under a realizability assumption: there exists a function in a (known) function class, always capable of predicting the expected reward, given the action and context. Under this assumption, we show three things. We present a new algorithm—Regressor Elimination— with a regret similar to the agnostic setting (i.e. in the absence of realizability assumption). We prove a new lower bound showing no algorithm can achieve superior performance in the worst case even with the realizability assumption. However, we do show that for any set of policies (mapping contexts to actions), there is a distribution over rewards (given context) such that our new algorithm has constant regret unlike the previous approaches.
Alekh Agarwal, Miroslav Dudík, Satyen Kale,
Added 27 Sep 2012
Updated 27 Sep 2012
Type Journal
Year 2012
Where JMLR
Authors Alekh Agarwal, Miroslav Dudík, Satyen Kale, John Langford, Robert E. Schapire
Comments (0)
books