Sciweavers

Share
PAMI
2006

Diffusion Maps and Coarse-Graining: A Unified Framework for Dimensionality Reduction, Graph Partitioning, and Data Set Parameter

8 years 4 months ago
Diffusion Maps and Coarse-Graining: A Unified Framework for Dimensionality Reduction, Graph Partitioning, and Data Set Parameter
We provide evidence that non-linear dimensionality reduction, clustering and data set parameterization can be solved within one and the same framework. The main idea is to define a system of coordinates with an explicit metric that reflects the connectivity of a given data set and that is robust to noise. Our construction, which is based on a Markov random walk on the data, offers a general scheme of simultaneously reorganizing and subsampling graphs and arbitrarily shaped data sets in high dimensions using intrinsic geometry. We show that clustering in embedding spaces is equivalent to compressing operators. The objective of data partitioning and clustering is to coarse-grain the random walk on the data while at the same time preserving a diffusion operator for the intrinsic geometry or connectivity of the data set up to some accuracy. We show that the quantization distortion in diffusion space bounds the error of compression of the operator, thus giving a rigorous justification for ...
Stéphane Lafon, Ann B. Lee
Added 14 Dec 2010
Updated 14 Dec 2010
Type Journal
Year 2006
Where PAMI
Authors Stéphane Lafon, Ann B. Lee
Comments (0)
books