Sciweavers

Share
COMGEO
2010
ACM

An efficient algorithm for the stratification and triangulation of an algebraic surface

8 years 3 months ago
An efficient algorithm for the stratification and triangulation of an algebraic surface
: We present a method to compute the exact topology of a real algebraic surface S, implicitly given by a polynomial f Q[x,y,z] of arbitrary total degree N. Additionally, our analysis provides geometric information as it supports the computation of arbitrary precise samples of S including critical points. We compute a stratification S of S into O(N5) nonsingular cells, including the complete adjacency information between these cells. This is done by a projection approach. We construct a special planar arrangement AS with fewer cells than a cad in the projection plane. Furthermore, our approach applies numerical and combinatorial methods to minimize costly symbolic computations. The algorithm handles all sorts of degeneracies without transforming the surface into a generic position. Based on S we also compute a simplicial complex which is isotopic to S. A complete C++-implementation of the stratification algorithm is presented. It shows good performance for many well-known examples from...
Eric Berberich, Michael Kerber, Michael Sagraloff
Added 09 Dec 2010
Updated 09 Dec 2010
Type Journal
Year 2010
Where COMGEO
Authors Eric Berberich, Michael Kerber, Michael Sagraloff
Comments (0)
books