Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

ESA

2000

Springer

2000

Springer

The p-center problem is to locate p facilities on a network so as to minimize the largest distance from a demand point to its nearest facility. The p-median problem is to locate p facilities on a network so as to minimize the average distance from one of the n demand points to one of the p facilities. We provide, given the interval model of an n vertex interval graph, an O(n) time algorithm for the 1-median problem on the interval graph. We also show how to solve the p-median problem, for arbitrary p, on an interval graph in O(pn log n) time and on an circulararc graph in O(pn2 log n) time. Other than for trees, no polynomial time algorithm for p-median problem has been reported for any large class of graphs. We introduce a spring model of computation and show how to solve the p-center problem on an circular-arc graph in O(pn) time, assuming that the arc endpoints are sorted.

Added |
24 Aug 2010 |

Updated |
24 Aug 2010 |

Type |
Conference |

Year |
2000 |

Where |
ESA |

Authors |
Sergei Bespamyatnikh, Binay K. Bhattacharya, J. Mark Keil, David G. Kirkpatrick, Michael Segal |

Comments (0)