Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

ISSAC

1998

Springer

1998

Springer

Continuous changes of the coefficients of a polynomial move the roots continuously. We consider the problem finding the minimal perturbations to the coefficients to move a root to a given locus, such as a single point, the real or imaginary axis, the unit circle, or the right half plane. We measure minimality in both the Euclidean distance to the coefficient vector and maximal coefficient-wise change in absolute value (infinity norm), either with entirely real or with complex coefficients. If the locus is a piecewise parametric curve, we can give efficient, i.e., polynomial time algorithms for the Euclidean norm; for the infinity norm we present an efficient algorithm when a root of the minimally perturbed polynomial is constrained to a single point. In terms of robust control, we are able to compute the radius of stability in the Euclidean norm for a wide range of convex open domains of the complex plane.

Related Content

Added |
06 Aug 2010 |

Updated |
06 Aug 2010 |

Type |
Conference |

Year |
1998 |

Where |
ISSAC |

Authors |
Markus A. Hitz, Erich Kaltofen |

Comments (0)