Efficient Arithmetic on Koblitz Curves

10 years 10 months ago
Efficient Arithmetic on Koblitz Curves
It has become increasingly common to implement discrete-logarithm based public-key protocols on elliptic curves over finite fields. The basic operation is scalar multiplication: taking a given integer multiple of a given point on the curve. The cost of the protocols depends on that of the elliptic scalar multiplication operation. Koblitz introduced a family of curves which admit especially fast elliptic scalar multiplication. His algorithm was later modified by Meier and Staffelbach. We give an improved version of the algorithm which runs 50% faster than any previous version. It is based on a new kind of representation of an integer, analogous to certain kinds of binary expansions. We also outline further speedups using precomputation and storage.
Jerome A. Solinas
Added 18 Dec 2010
Updated 18 Dec 2010
Type Journal
Year 2000
Where DCC
Authors Jerome A. Solinas
Comments (0)