Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

DCC

2000

IEEE

2000

IEEE

It has become increasingly common to implement discrete-logarithm based public-key protocols on elliptic curves over finite fields. The basic operation is scalar multiplication: taking a given integer multiple of a given point on the curve. The cost of the protocols depends on that of the elliptic scalar multiplication operation. Koblitz introduced a family of curves which admit especially fast elliptic scalar multiplication. His algorithm was later modified by Meier and Staffelbach. We give an improved version of the algorithm which runs 50% faster than any previous version. It is based on a new kind of representation of an integer, analogous to certain kinds of binary expansions. We also outline further speedups using precomputation and storage.

Related Content

Added |
18 Dec 2010 |

Updated |
18 Dec 2010 |

Type |
Journal |

Year |
2000 |

Where |
DCC |

Authors |
Jerome A. Solinas |

Comments (0)