Sciweavers

Share
EDBT
2009
ACM

Efficient skyline retrieval with arbitrary similarity measures

8 years 8 months ago
Efficient skyline retrieval with arbitrary similarity measures
A skyline query returns a set of objects that are not dominated by other objects. An object is said to dominate another if it is closer to the query than the latter on all factors under consideration. In this paper, we consider the case where the similarity measures may be arbitrary and do not necessarily come from a metric space. We first explore middleware algorithms, analyze how skyline retrieval for nonmetric spaces can be done on the middleware backend, and lay down a necessary and sufficient stopping condition for middleware-based skyline algorithms. We develop the Balanced Access Algorithm, which is provably more IO-friendly than the state-of-the-art algorithm for skyline query processing on middleware and show that BAA outperforms the latter by orders of magnitude. We also show that without prior knowledge about data distributions, it is unlikely to have a middleware algorithm that is more IO-friendly than BAA. In fact, we empirically show that BAA is very close to the absolut...
Deepak P, Prasad M. Deshpande, Debapriyo Majumdar,
Added 16 Aug 2010
Updated 16 Aug 2010
Type Conference
Year 2009
Where EDBT
Authors Deepak P, Prasad M. Deshpande, Debapriyo Majumdar, Raghu Krishnapuram
Comments (0)
books