Sciweavers

Share
COMPGEOM
2007
ACM

Embeddings of surfaces, curves, and moving points in euclidean space

8 years 8 months ago
Embeddings of surfaces, curves, and moving points in euclidean space
In this paper we show that dimensionality reduction (i.e., Johnson-Lindenstrauss lemma) preserves not only the distances between static points, but also between moving points, and more generally between low-dimensional flats, polynomial curves, curves with low winding degree, and polynomial surfaces. We also show that surfaces with bounded doubling dimension can be embedded into low dimension with small additive error. Finally, we show that for points with polynomial motion, the radius of the smallest enclosing ball can be preserved under dimensionality reduction.
Pankaj K. Agarwal, Sariel Har-Peled, Hai Yu
Added 14 Aug 2010
Updated 14 Aug 2010
Type Conference
Year 2007
Where COMPGEOM
Authors Pankaj K. Agarwal, Sariel Har-Peled, Hai Yu
Comments (0)
books