Sciweavers

Share
CVPR
2005
IEEE

Estimating 3D Shape and Texture Using Pixel Intensity, Edges, Specular Highlights, Texture Constraints and a Prior

9 years 6 months ago
Estimating 3D Shape and Texture Using Pixel Intensity, Edges, Specular Highlights, Texture Constraints and a Prior
We present a novel algorithm aiming to estimate the 3D shape, the texture of a human face, along with the 3D pose and the light direction from a single photograph by recovering the parameters of a 3D Morphable Model. Generally, the algorithms tackling the problem of 3D shape estimation from image data use only the pixels intensity as input to drive the estimation process. This was previously achieved using either a simple model, such as the Lambertian reflectance model, leading to a linear fitting algorithm. Alternatively, this problem was addressed using a more precise model and minimizing a non-convex cost function with many local minima. One way to reduce the local minima problem is to use a stochastic optimization algorithm. However, the convergence properties (such as the radius of convergence) of such algorithms, are limited. Here, as well as the pixel intensity, we use various image features such as the edges or the location of the specular highlights. The 3D shape, texture and...
Sami Romdhani, Thomas Vetter
Added 12 Oct 2009
Updated 29 Oct 2009
Type Conference
Year 2005
Where CVPR
Authors Sami Romdhani, Thomas Vetter
Comments (0)
books