Sciweavers

Share
ICML
2008
IEEE

Estimating local optimums in EM algorithm over Gaussian mixture model

12 years 7 months ago
Estimating local optimums in EM algorithm over Gaussian mixture model
EM algorithm is a very popular iteration-based method to estimate the parameters of Gaussian Mixture Model from a large observation set. However, in most cases, EM algorithm is not guaranteed to converge to the global optimum. Instead, it stops at some local optimums, which can be much worse than the global optimum. Therefore, it is usually required to run multiple procedures of EM algorithm with different initial configurations and return the best solution. To improve the efficiency of this scheme, we propose a new method which can estimate an upper bound on the logarithm likelihood of the local optimum, based on the current configuration after the latest EM iteration. This is accomplished by first deriving some region bounding the possible locations of local optimum, followed by some upper bound estimation on the maximum likelihood. With this estimation, we can terminate an EM algorithm procedure if the estimated local optimum is definitely worse than the best solution seen so far. ...
Zhenjie Zhang, Bing Tian Dai, Anthony K. H. Tung
Added 17 Nov 2009
Updated 17 Nov 2009
Type Conference
Year 2008
Where ICML
Authors Zhenjie Zhang, Bing Tian Dai, Anthony K. H. Tung
Comments (0)
books