Sciweavers

Share
ICRA
2010
IEEE

Evaluation of robotic needle steering in ex vivo tissue

9 years 26 days ago
Evaluation of robotic needle steering in ex vivo tissue
Abstract— Insertion velocity, tip asymmetry, and shaft diameter may influence steerable needle insertion paths in soft tissue. In this paper we examine the effects of these variables on needle paths in ex vivo goat liver, and demonstrate practical applications of robotic needle steering for ablation, biopsy, and brachytherapy. All experiments were performed using a new portable needle steering robot that steers asymmetric-tip needles under fluoroscopic imaging. For bevel-tip needles, we found that larger diameter needles resulted in less curvature, i.e. less steerability, confirming previous experiments in artificial tissue. The needles steered with radii of curvature ranging from 3.4 cm (for the most steerable pre-bent needle) to 2.97 m (for the least steerable bevel needle). Pre-bend angle significantly affected needle curvature, but bevel angle did not. We hypothesize that biological tissue characteristics such as inhomogeneity and viscoelasticity significantly increase path...
Ann Majewicz, Thomas R. Wedlick, Kyle Brandon Reed
Added 26 Jan 2011
Updated 26 Jan 2011
Type Journal
Year 2010
Where ICRA
Authors Ann Majewicz, Thomas R. Wedlick, Kyle Brandon Reed, Allison M. Okamura
Comments (0)
books