Evaluation of text clustering methods using wordnet

9 years 10 months ago
Evaluation of text clustering methods using wordnet
: The increasing number of digitized texts presently available notably on the Web has developed an acute need in text mining techniques. Clustering systems are used more and more often in text mining, especially to analyze texts and to extract knowledge they contain. With the availability of the vast amount of clustering algorithms and techniques, it becomes highly confusing to a user to choose the algorithm that best suits its target dataset. Actually, it is very hard to define which algorithms work the best, since results depend considerably on the application and on the kinds of data at hand. In this paper, we propose, study and compare three text clustering methods: an ascending hierarchical clustering method, a SOM-based clustering method and an ant-based clustering method, all of these based on the synsets of WordNet as terms for the representation of textual documents. The effects of these methods are examined in several experiments using 3 similarity measurements: the cosine di...
Abdelmalek Amine, Zakaria Elberrichi, Michel Simon
Added 03 Mar 2011
Updated 03 Mar 2011
Type Journal
Year 2010
Authors Abdelmalek Amine, Zakaria Elberrichi, Michel Simonet
Comments (0)