Sciweavers

Share
SIGMOD
2000
ACM

Finding Generalized Projected Clusters In High Dimensional Spaces

8 years 8 months ago
Finding Generalized Projected Clusters In High Dimensional Spaces
High dimensional data has always been a challenge for clustering algorithms because of the inherent sparsity of the points. Recent research results indicate that in high dimensional data, even the concept of proximity or clustering may not be meaningful. We discuss very general techniques for projected clustering which are able to construct clusters in arbitrarily aligned subspaces of lower dimensionality. The subspaces are speci c to the clusters themselves. This de nition is substantially more general and realistic than currently available techniques which limit the method to only projections from the original set of attributes. The generalized projected clustering technique may also be viewed as a way of trying to rede ne clustering for high dimensional applications by searching for hidden subspaces with clusters which are created by inter-attribute correlations. We provide a new concept of using extended cluster feature vectors in order to make the algorithm scalable for very larg...
Charu C. Aggarwal, Philip S. Yu
Added 01 Aug 2010
Updated 01 Aug 2010
Type Conference
Year 2000
Where SIGMOD
Authors Charu C. Aggarwal, Philip S. Yu
Comments (0)
books