Sciweavers

EUROCRYPT
2012
Springer

Fully Homomorphic Encryption with Polylog Overhead

11 years 6 months ago
Fully Homomorphic Encryption with Polylog Overhead
We show that homomorphic evaluation of (wide enough) arithmetic circuits can be accomplished with only polylogarithmic overhead. Namely, we present a construction of fully homomorphic encryption (FHE) schemes that for security parameter λ can evaluate any width-Ω(λ) circuit with t gates in time t · polylog(λ). To get low overhead, we use the recent batch homomorphic evaluation techniques of Smart-Vercauteren and BrakerskiGentry-Vaikuntanathan, who showed that homomorphic operations can be applied to “packed” ciphertexts that encrypt vectors of plaintext elements. In this work, we introduce permuting/routing techniques to move plaintext elements across these vectors efficiently. Hence, we are able to implement general arithmetic circuit in a batched fashion without ever needing to “unpack” the plaintext vectors. We also introduce some other optimizations that can speed up homomorphic evaluation in certain cases. For example, we show how to use the Frobenius map to raise p...
Craig Gentry, Shai Halevi, Nigel P. Smart
Added 29 Sep 2012
Updated 29 Sep 2012
Type Journal
Year 2012
Where EUROCRYPT
Authors Craig Gentry, Shai Halevi, Nigel P. Smart
Comments (0)