Sciweavers

Share
ICPR
2000
IEEE

On Gaussian Radial Basis Function Approximations: Interpretation, Extensions, and Learning Strategies

9 years 7 months ago
On Gaussian Radial Basis Function Approximations: Interpretation, Extensions, and Learning Strategies
In this paper we focus on an interpretation of Gaussian radial basis functions (GRBF) which motivates extensions and learning strategies. Specifically, we show that GRBF regression equations naturally result from representing the input-output joint probability density function by a finite mixture of Gaussians. Corollaries of this interpretation are: some special forms of GRBF representations can be traced back to the type of Gaussian mixture used; previously proposed learning methods based on input-output clustering have a new meaning; finally, estimation techniques for finite mixtures (namely the EM algorithm, and model selection criteria) can be invoked to learn GRBF regression equations.
Mário A. T. Figueiredo
Added 09 Nov 2009
Updated 09 Nov 2009
Type Conference
Year 2000
Where ICPR
Authors Mário A. T. Figueiredo
Comments (0)
books