Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

COMGEO

2007

ACM

2007

ACM

The slope-number of a graph G is the minimum number of distinct edge slopes in a straight-line drawing of G in the plane. We prove that for Δ 5 and all large n, there is a Δ-regular n-vertex graph with slope-number at least n1− 8+ε Δ+4 . This is the best known lower bound on the slope-number of a graph with bounded degree. We prove upper and lower bounds on the slope-number of complete bipartite graphs. We prove a general upper bound on the slope-number of an arbitrary graph in terms of its bandwidth. It follows that the slope-number of interval graphs, cocomparability graphs, and AT-free graphs is at most a function of the maximum degree. We prove that graphs of bounded degree and bounded treewidth have slope-number at most O(logn). Finally we prove that every graph has a drawing with one bend per edge, in which the number of slopes is at most one more than the maximum degree. In a companion paper, planar drawings of graphs with few slopes are also considered. © 2006 Elsevier ...

Related Content

Added |
12 Dec 2010 |

Updated |
12 Dec 2010 |

Type |
Journal |

Year |
2007 |

Where |
COMGEO |

Authors |
Vida Dujmovic, Matthew Suderman, David R. Wood |

Comments (0)