Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

SODA

2008

ACM

2008

ACM

Greedy Routing is a class of routing algorithms in which the packets are forwarded in a manner that reduces the distance to the destination at every step. In an attempt to provide theoretical guarantees for a class of greedy routing algorithms, Papadimitriou and Ratajczak [PR05] came up with the following conjecture: Any 3-connected planar graph can be drawn in the plane such that for every pair of vertices s and t a distance decreasing path can be found. A path s = v1, v2, ..., vk = t in a drawing is said to be distance decreasing if vi t < vi-1 - t , 2 i k where . . . denotes the Euclidean distance. We settle this conjecture in the affirmative for the case of triangulations. A partitioning of the edges of a triangulation G into 3 trees, called the realizer of G, was first developed by Walter Schnyder who also gave a drawing algorithm based on this. We generalize Schnyder's algorithm to obtain a whole class of drawings of any given triangulation G. We show, using the Knaste...

Related Content

Added |
30 Oct 2010 |

Updated |
30 Oct 2010 |

Type |
Conference |

Year |
2008 |

Where |
SODA |

Authors |
Raghavan Dhandapani |

Comments (0)