Growth, Structure and Pattern Formation for Thin Films

9 years 11 months ago
Growth, Structure and Pattern Formation for Thin Films
Abstract An epitaxial thin film consists of layers of atoms whose lattice properties are determined by those of the underlying substrate. This paper reviews mathematical modeling, analysis and simulation of growth, structure and pattern formation for epitaxial systems, using an island dynamics/level set method for growth and a lattice statics model for strain. Epitaxial growth involves physics on both atomistic and continuum length scales. For example, diffusion of adatoms can be coarse-grained, but nucleation of new islands and breakup for existing islands are best described atomistically. In heteroepitaxial growth, mismatch between the lattice spacing of the substrate and the film will introduce a strain into the film, which can significantly influence the material structure, for example leading to formation of quantum dots. Technological applications of epitaxial structures, such as quantum dot arrays, require a degree of geometric uniformity that has been difficult to achieve. Mode...
Russel E. Caflisch
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2008
Authors Russel E. Caflisch
Comments (0)