Sciweavers

Share
ICAT
2003
IEEE

Head Motion Prediction in Augmented Reality Systems Using Monte Carlo Particle Filters

9 years 4 months ago
Head Motion Prediction in Augmented Reality Systems Using Monte Carlo Particle Filters
A basic problem with Augmented Reality systems using Head-Mounted Displays (HMDs) is the perceived latency or lag. This delay corresponds to the elapsed time between the moment when the user's head moves and the moment of displaying the corresponding virtual objects in the HMD. One way to eliminate or reduce the effect of system delays is to predict future head locations. Actually, the most used filter to predict head motion is the extended Kalman filter (EKF). However, when dealing with non linear models (like head motion) in state equation and measurement relation and a non Gaussian noise assumption, the EKF method may lead to a non optimal solution. In this paper, we propose to use sequential Monte Carlo methods, also known as particle filters to predict head motion. Theses methods provide general solutions to many problems with any non linearities or distributions. Our purpose is to compare, both in simulation and in real task, the results obtained by particle filter with tho...
Fakhreddine Ababsa, Jean-Yves Didier, Malik Mallem
Added 04 Jul 2010
Updated 04 Jul 2010
Type Conference
Year 2003
Where ICAT
Authors Fakhreddine Ababsa, Jean-Yves Didier, Malik Mallem, David Roussel
Comments (0)
books