Identifying Graph Automorphisms Using Determining Sets

9 years 10 months ago
Identifying Graph Automorphisms Using Determining Sets
A set of vertices S is a determining set for a graph G if every automorphism of G is uniquely determined by its action on S. The determining number of a graph is the size of a smallest determining set. This paper describes ways of finding and verifying determining sets, gives natural lower bounds on the determining number, and shows how to use orbits to investigate determining sets. Further, determining sets of Kneser graphs are extensively studied, sharp bounds for their determining numbers are provided, and all Kneser graphs with determining number 2, 3, or 4 are given.
Debra L. Boutin
Added 11 Dec 2010
Updated 11 Dec 2010
Type Journal
Year 2006
Authors Debra L. Boutin
Comments (0)