Image Segmentation with a Unified Graphical Model

8 years 9 months ago
Image Segmentation with a Unified Graphical Model
—We propose a unified graphical model that can represent both the causal and noncausal relationships among random variables and apply it to the image segmentation problem. Specifically, we first propose to employ Conditional Random Field (CRF) to model the spatial relationships among image superpixel regions and their measurements. We then introduce a multilayer Bayesian Network (BN) to model the causal dependencies that naturally exist among different image entities, including image regions, edges, and vertices. The CRF model and the BN model are then systematically and seamlessly combined through the theories of Factor Graph to form a unified probabilistic graphical model that captures the complex relationships among different image entities. Using the unified graphical model, image segmentation can be performed through a principled probabilistic inference. Experimental results on the Weizmann horse data set, on the VOC2006 cow data set, and on the MSRC2 multiclass data set demonst...
Lei Zhang 0011, Qiang Ji
Added 29 Jan 2011
Updated 29 Jan 2011
Type Journal
Year 2010
Where PAMI
Authors Lei Zhang 0011, Qiang Ji
Comments (0)