Sciweavers

Share
ICRA
2005
IEEE

Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling

10 years 3 months ago
Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling
— Recently Rao-Blackwellized particle filters have been introduced as effective means to solve the simultaneous localization and mapping (SLAM) problem. This approach uses a particle filter in which each particle carries an individual map of the environment. Accordingly, a key question is how to reduce the number of particles. In this paper we present adaptive techniques to reduce the number of particles in a RaoBlackwellized particle filter for learning grid maps. We propose an approach to compute an accurate proposal distribution taking into account not only the movement of the robot but also the most recent observation. This drastically decrease the uncertainty about the robot’s pose in the prediction step of the filter. Furthermore, we present an approach to selectively carry out re-sampling operations which seriously reduces the problem of particle depletion. Experimental results carried out with mobile robots in large-scale indoor as well as in outdoor environments illust...
Giorgio Grisetti, Cyrill Stachniss, Wolfram Burgar
Added 25 Jun 2010
Updated 25 Jun 2010
Type Conference
Year 2005
Where ICRA
Authors Giorgio Grisetti, Cyrill Stachniss, Wolfram Burgard
Comments (0)
books