On the Incompressibility of Monotone DNFs

8 years 11 months ago
On the Incompressibility of Monotone DNFs
We prove optimal lower bounds for multilinear circuits and for monotone circuits with bounded depth. These lower bounds state that, in order to compute certain functions, these circuits need exactly as many OR gates as the respective DNFs. The proofs exploit a property of the functions that is based solely on prime implicant structure. Due to this feature, the lower bounds proved also hold for approximations of the considered functions that are similar to slice functions. Known lower bound arguments cannot handle these kinds of approximations. In order to show limitations of our approach, we prove that cliques of size n − 1 can be detected in a graph with n vertices by monotone formulae with O (log n) OR gates. Our lower bound for multilinear circuits improves a lower bound due to Borodin, Razborov and Smolensky for nondeterministic read-once branching programs computing the clique function.
Matthias P. Krieger
Added 27 Jun 2010
Updated 27 Jun 2010
Type Conference
Year 2005
Where FCT
Authors Matthias P. Krieger
Comments (0)