Sciweavers

Share
AC
2003
Springer

Influence of Location over Several Classifiers in 2D and 3D Face Verification

11 years 5 months ago
Influence of Location over Several Classifiers in 2D and 3D Face Verification
In this paper two methods for human face recognition and the influence of location mistakes are shown. First one, Principal Components Analysis (PCA), has been one of the most applied methods to perform face verification in 2D. In our experiments three classifiers have been considered to test influence of location errors in face verification using PCA. An initial set of "correct located faces" has been used for PCA matrix computation and to train all classifiers. An initial test set was built considering a "correct located faces" set (based on different images than training ones) and then a new test set was obtained by applying a small displacement in both axis (20 pixels) to the initial set. Second method is based on geometrical characteristics constructed with facial and cranial points that come from a 3D representation. Data are acquired by a calibrated stereo system. Classifiers considered for both methods are knearest neighbours (KNN), artificial neural network...
Susana Mata, Cristina Conde, Araceli Sánche
Added 23 Aug 2010
Updated 23 Aug 2010
Type Conference
Year 2003
Where AC
Authors Susana Mata, Cristina Conde, Araceli Sánchez, Enrique Cabello
Comments (0)
books