Information measures for infinite sequences

10 years 25 days ago
Information measures for infinite sequences
We revisit the notion of computational depth and sophistication for infinite sequences and study the density of the sets of deep and sophisticated infinite sequences. Koppel defined the sophistication of an object as the length of the shortest total program that given some data as input produces it and the sum of the size of the program with the size of the data is as consice as the smallest description of the object. However, the notion of sophistication is not properly defined for all sequences. We propose a new definition of sophistication for infinite sequences as the limit of the ratio of the sophistication of the initial segments and its length. We prove that the set of sequences with sophistication equal to zero has Lebesgue measure one and that the set of sophisticated sequences is dense, when the sophistication is defined with lim inf and lim sup respectively. Antunes, Fortnow, van Melkebeek and Vinodchandran captured the notion of useful information by computational depth, t...
Luis Filipe Coelho Antunes, Andre Souto
Added 21 May 2011
Updated 21 May 2011
Type Journal
Year 2010
Where TCS
Authors Luis Filipe Coelho Antunes, Andre Souto
Comments (0)