Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

TCS

2010

2010

We revisit the notion of computational depth and sophistication for infinite sequences and study the density of the sets of deep and sophisticated infinite sequences. Koppel defined the sophistication of an object as the length of the shortest total program that given some data as input produces it and the sum of the size of the program with the size of the data is as consice as the smallest description of the object. However, the notion of sophistication is not properly defined for all sequences. We propose a new definition of sophistication for infinite sequences as the limit of the ratio of the sophistication of the initial segments and its length. We prove that the set of sequences with sophistication equal to zero has Lebesgue measure one and that the set of sophisticated sequences is dense, when the sophistication is defined with lim inf and lim sup respectively. Antunes, Fortnow, van Melkebeek and Vinodchandran captured the notion of useful information by computational depth, t...

Related Content

Added |
21 May 2011 |

Updated |
21 May 2011 |

Type |
Journal |

Year |
2010 |

Where |
TCS |

Authors |
Luis Filipe Coelho Antunes, Andre Souto |

Comments (0)