Instance-Based Relevance Feedback for Image Retrieval

9 years 2 months ago
Instance-Based Relevance Feedback for Image Retrieval
High retrieval precision in content-based image retrieval can be attained by adopting relevance feedback mechanisms. These mechanisms require that the user judges the quality of the results of the query by marking all the retrieved images as being either relevant or not. Then, the search engine exploits this information to adapt the search to better meet user's needs. At present, the vast majority of proposed relevance feedback mechanisms are formulated in terms of search model that has to be optimized. Such an optimization involves the modification of some search parameters so that the nearest neighbor of the query vector contains the largest number of relevant images. In this paper, a different approach to relevance feedback is proposed. After the user provides the first feedback, following retrievals are not based on knn search, but on the computation of a relevance score for each image of the database. This score is computed as a function of two distances, namely the distance...
Giorgio Giacinto, Fabio Roli
Added 31 Oct 2010
Updated 31 Oct 2010
Type Conference
Year 2004
Where NIPS
Authors Giorgio Giacinto, Fabio Roli
Comments (0)