Iterative Methods in Combinatorial Optimization

9 years 2 months ago
Iterative Methods in Combinatorial Optimization
We describe a simple iterative method for proving a variety of results in combinatorial optimization. It is inspired by Jain’s iterative rounding method (FOCS 1998) for designing approximation algorithms for survivable network design problems, and augmented with a relaxation idea in the work of Lau, Naor, Salvatipour and Singh (STOC 2007) on designing an approximation algorithm for its degree bounded version. At the heart of the method is a counting argument that redistributes tokens from the columns to the rows of an LP extreme point. This token argument was further refined to fractional assignment and redistribution in work of Bansal, Khandekar and Nagarajan on degree-bounded directed network design (STOC 2008). In this presentation, we introduce the method using the assignment problem, describe its application to showing the integrality of Edmond’s characterization (1971) of the spanning tree polyhedron, and then extend the argument to show a simple proof of the Singh and Lau...
R. Ravi
Added 26 May 2010
Updated 26 May 2010
Type Conference
Year 2009
Authors R. Ravi
Comments (0)