Sciweavers

Share
SIAMCO
2008

A Knowledge-Gradient Policy for Sequential Information Collection

10 years 1 months ago
A Knowledge-Gradient Policy for Sequential Information Collection
In a sequential Bayesian ranking and selection problem with independent normal populations and common known variance, we study a previously introduced measurement policy which we refer to as the knowledge-gradient policy. This policy myopically maximizes the expected increment in the value of information in each time period, where the value is measured according to the terminal utility function. We show that the knowledge-gradient policy is optimal both when the horizon is a single time period, and in the limit as the horizon extends to infinity. We show furthermore that, in some special cases, the knowledge-gradient policy is optimal regardless of the length of any given fixed total sampling horizon. We bound the knowledge-gradient policy's suboptimality in the remaining cases, and show through simulations that it performs competitively with or significantly better than other policies.
Peter Frazier, Warren B. Powell, Savas Dayanik
Added 14 Dec 2010
Updated 14 Dec 2010
Type Journal
Year 2008
Where SIAMCO
Authors Peter Frazier, Warren B. Powell, Savas Dayanik
Comments (0)
books