Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

KDD

2008

ACM

2008

ACM

The input to an algorithm that learns a binary classifier normally consists of two sets of examples, where one set consists of positive examples of the concept to be learned, and the other set consists of negative examples. However, it is often the case that the available training data are an incomplete set of positive examples, and a set of unlabeled examples, some of which are positive and some of which are negative. The problem solved in this paper is how to learn a standard binary classifier given a nontraditional training set of this nature. Under the assumption that the labeled examples are selected randomly from the positive examples, we show that a classifier trained on positive and unlabeled examples predicts probabilities that differ by only a constant factor from the true conditional probabilities of being positive. We show how to use this result in two different ways to learn a classifier from a nontraditional training set. We then apply these two new methods to solve a re...

Related Content

Added |
30 Nov 2009 |

Updated |
30 Nov 2009 |

Type |
Conference |

Year |
2008 |

Where |
KDD |

Authors |
Charles Elkan, Keith Noto |

Comments (0)