Sciweavers

Share
SIGIR
2004
ACM

Learning effective ranking functions for newsgroup search

9 years 2 months ago
Learning effective ranking functions for newsgroup search
Web communities are web virtual broadcasting spaces where people can freely discuss anything. While such communities function as discussion boards, they have even greater value as large repositories of archived information. In order to unlock the value of this resource, we need an effective means for searching archived discussion threads. Unfortunately the techniques that have proven successful for searching document collections and the Web are not ideally suited to the task of searching archived community discussions. In this paper, we explore the problem of creating an effective ranking function to predict the most relevant messages to queries in community search. We extract a set of predictive features from the thread trees of newsgroup messages as well as features of message authors and lexical distribution within a message thread. Our final results indicate that when using linear regression with this feature set, our search system achieved a 28.5% performance improvement compared...
Wensi Xi, Jesper Lind, Eric Brill
Added 30 Jun 2010
Updated 30 Jun 2010
Type Conference
Year 2004
Where SIGIR
Authors Wensi Xi, Jesper Lind, Eric Brill
Comments (0)
books