Sciweavers

Share
NIPS
2004

Learning Hyper-Features for Visual Identification

9 years 21 days ago
Learning Hyper-Features for Visual Identification
We address the problem of identifying specific instances of a class (cars) from a set of images all belonging to that class. Although we cannot build a model for any particular instance (as we may be provided with only one "training" example of it), we can use information extracted from observing other members of the class. We pose this task as a learning problem, in which the learner is given image pairs, labeled as matching or not, and must discover which image features are most consistent for matching instances and discriminative for mismatches. We explore a patch based representation, where we model the distributions of similarity measurements defined on the patches. Finally, we describe an algorithm that selects the most salient patches based on a mutual information criterion. This algorithm performs identification well for our challenging dataset of car images, after matching only a few, well chosen patches.
Andras Ferencz, Erik G. Learned-Miller, Jitendra M
Added 31 Oct 2010
Updated 31 Oct 2010
Type Conference
Year 2004
Where NIPS
Authors Andras Ferencz, Erik G. Learned-Miller, Jitendra Malik
Comments (0)
books