Learning Local Image Descriptors

11 years 4 months ago
Learning Local Image Descriptors
In this paper we study interest point descriptors for image matching and 3D reconstruction. We examine the building blocks of descriptor algorithms and evaluate numerous combinations of components. Various published descriptors such as SIFT, GLOH, and Spin Images can be cast into our framework. For each candidate algorithm we learn good choices for parameters using a training set consisting of patches from a multi-image 3D reconstruction where accurate ground-truth matches are known. The best descriptors were those with log polar histogramming regions and feature vectors constructed from rectified outputs of steerable quadrature filters. At a 95% detection rate these gave one third of the incorrect matches produced by SIFT.
Simon A. J. Winder, Matthew Brown
Added 12 Oct 2009
Updated 28 Oct 2009
Type Conference
Year 2007
Where CVPR
Authors Simon A. J. Winder, Matthew Brown
Comments (0)