Sciweavers

Share
ICML
2001
IEEE

Learning to Select Good Title Words: An New Approach based on Reverse Information Retrieval

12 years 6 months ago
Learning to Select Good Title Words: An New Approach based on Reverse Information Retrieval
In this paper, we show how we can learn to select good words for a document title. We view the problem of selecting good title words for a document as a variant of an Information Retrieval problem. Each title word is treated as a "document" and selection of appropriate title words as finding relevant "documents". Based on our training collection consisting of 40,000 document and title pairs, we learn the "document" representations for all the title words and apply these learned representations to select appropriate title words over 10,000 test documents. Compared to other learning approaches, namely K nearest neighbor approach, a Na?ve Bayesian approach and a variant of a machine translation model, we find that our approach is significantly better as indicated by the F1 metric.
Rong Jin, Alexander G. Hauptmann
Added 17 Nov 2009
Updated 17 Nov 2009
Type Conference
Year 2001
Where ICML
Authors Rong Jin, Alexander G. Hauptmann
Comments (0)
books