Limits of Spectral Clustering

12 years 3 months ago
Limits of Spectral Clustering
An important aspect of clustering algorithms is whether the partitions constructed on finite samples converge to a useful clustering of the whole data space as the sample size increases. This paper investigates this question for normalized and unnormalized versions of the popular spectral clustering algorithm. Surprisingly, the convergence of unnormalized spectral clustering is more difficult to handle than the normalized case. Even though recently some first results on the convergence of normalized spectral clustering have been obtained, for the unnormalized case we have to develop a completely new approach combining tools from numerical integration, spectral and perturbation theory, and probability. It turns out that while in the normalized case, spectral clustering usually converges to a nice partition of the data space, in the unnormalized case the same only holds under strong additional assumptions which are not always satisfied. We conclude that our analysis gives strong evidenc...
Ulrike von Luxburg, Olivier Bousquet, Mikhail Belk
Added 31 Oct 2010
Updated 31 Oct 2010
Type Conference
Year 2004
Where NIPS
Authors Ulrike von Luxburg, Olivier Bousquet, Mikhail Belkin
Comments (0)