Sciweavers

Share
ICML
2007
IEEE

Local learning projections

10 years 11 months ago
Local learning projections
This paper presents a Local Learning Projection (LLP) approach for linear dimensionality reduction. We first point out that the well known Principal Component Analysis (PCA) essentially seeks the projection that has the minimal global estimation error. Then we propose a dimensionality reduction algorithm that leads to the projection with the minimal local estimation error, and elucidate its advantages for classification tasks. We also indicate that LLP keeps the local information in the sense that the projection value of each point can be well estimated based on its neighbors and their projection values. Experimental results are provided to validate the effectiveness of the proposed algorithm.
Bernhard Schölkopf, Kai Yu, Mingrui Wu, Shipe
Added 17 Nov 2009
Updated 17 Nov 2009
Type Conference
Year 2007
Where ICML
Authors Bernhard Schölkopf, Kai Yu, Mingrui Wu, Shipeng Yu
Comments (0)
books