Sciweavers

Share
CL
2000
Springer

Logic, Knowledge Representation, and Bayesian Decision Theory

11 years 11 months ago
Logic, Knowledge Representation, and Bayesian Decision Theory
In this paper I give a brief overview of recent work on uncertainty inAI, and relate it to logical representations. Bayesian decision theory and logic are both normative frameworks for reasoning that emphasize different aspects of intelligent reasoning. Belief networks (Bayesian networks) are representations of independence that form the basis for understanding much of the recent work on reasoning under uncertainty, evidential and causal reasoning, decision analysis, dynamical systems, optimal control, reinforcement learning and Bayesian learning. The independent choice logic provides a bridge between logical representations and belief networks that lets us understand these other representations and their relationship to logic and shows how they can extended to first-order rule-based representations. This paper discusses what the representations of uncertainty can bring to the computational logic community and what the computational logic community can bring to those studying reasonin...
David Poole
Added 02 Aug 2010
Updated 02 Aug 2010
Type Conference
Year 2000
Where CL
Authors David Poole
Comments (0)
books