Sciweavers

Share
ECCV
2010
Springer

Manifold Valued Statistics, Exact Principal Geodesic Analysis and the Effect of Linear Approximations

3 years 8 months ago
Manifold Valued Statistics, Exact Principal Geodesic Analysis and the Effect of Linear Approximations
Manifolds are widely used to model non-linearity arising in a range of computer vision applications. This paper treats statistics on manifolds and the loss of accuracy occurring when linearizing the manifold prior to performing statistical operations. Using recent advances in manifold computations, we present a comparison between the non-linear analog of Principal Component Analysis, Principal Geodesic Analysis, in its linearized form and its exact counterpart that uses true intrinsic distances. We give examples of datasets for which the linearized version provides good approximations and for which it does not. Indicators for the differences between the two versions are then developed and applied to two examples of manifold valued data: outlines of vertebrae from a study of vertebral fractures and spacial coordinates of human skeleton end-effectors acquired using a stereo camera and tracking software. Key words: manifolds, Riemannian metrics, linearization, manifold valued statistics, ...
Related Content
Added 02 Aug 2010
Updated 02 Aug 2010
Type Conference
Year 2010
Where ECCV
Comments (0)
books